Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38610485

RESUMO

The multi-layered negative effects caused by pollutants released into the atmosphere as a result of fires served as the stimulus for the development of a system that protects the health of firefighters operating in the affected area. A collaborative network comprising mobile and stationary Internet of Things (IoT) devices that are furnished with gas sensors, along with a remote server, constructs a resilient framework that monitors the concentrations of harmful emissions, characterizes the ambient air quality of the vicinity where the fire transpires, adopting European Air Quality levels, and communicates the outcomes via suitable applications (RESTful APIs and visualizations) to the stakeholders responsible for fire management decision making. Different experimental evaluations adopting separate contexts illustrate the operation of the infrastructure.


Assuntos
Poluentes Ambientais , Bombeiros , Internet das Coisas , Humanos , Atmosfera , Computadores
2.
Sensors (Basel) ; 22(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35746100

RESUMO

Convolution Neural Networks (CNNs) are gaining ground in deep learning and Artificial Intelligence (AI) domains, and they can benefit from rapid prototyping in order to produce efficient and low-power hardware designs. The inference process of a Deep Neural Network (DNN) is considered a computationally intensive process that requires hardware accelerators to operate in real-world scenarios due to the low latency requirements of real-time applications. As a result, High-Level Synthesis (HLS) tools are gaining popularity since they provide attractive ways to reduce design time complexity directly in register transfer level (RTL). In this paper, we implement a MobileNetV2 model using a state-of-the-art HLS tool in order to conduct a design space exploration and to provide insights on complex hardware designs which are tailored for DNN inference. Our goal is to combine design methodologies with sparsification techniques to produce hardware accelerators that achieve comparable error metrics within the same order of magnitude with the corresponding state-of-the-art systems while also significantly reducing the inference latency and resource utilization. Toward this end, we apply sparse matrix techniques on a MobileNetV2 model for efficient data representation, and we evaluate our designs in two different weight pruning approaches. Experimental results are evaluated with respect to the CIFAR-10 data set using several different design methodologies in order to fully explore their effects on the performance of the model under examination.


Assuntos
Inteligência Artificial , Voo Espacial , Computadores , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...